Accurate quantification of uncertainty in epidemic parameter estimates and predictions using stochastic compartmental models.


) and short- and long-term predictions (e.g. one and three-week forecasts, timing and number of cases at the epidemic peak, and final epidemic size). Applying the extended MSS approach to a humidity-based stochastic compartmental influenza model, we were able to accurately predict influenza-like illness activity reported by U.S. Centers for Disease Control and Prevention from 10 regions as well as city-level influenza activity using real-time, city-specific Google search query data from 119 U.S. cities between 2003 and 2014.

MIDAS Network Members