Close

Control of endemic swine flu persistence in farrow-to-finish pig farms: a stochastic metapopulation modeling assessment.

Abstract

N2, H3N2, the 2009 H1N1 pandemic virus and their reassortants. The specific population dynamics of farrow-to-finish pig farms, the immune status of the animals at infection-time, the co-circulation of distinct subtypes leading to consecutive or concomitant infections have been evidenced as factors favouring swIAV persistence within herds. We developed a stochastic metapopulation model representing the co-circulation of two distinct swIAVs within a typical farrow-to-finish pig herd to evaluate the risk of reassortant viruses generation due to co-infection events. Control strategies related to herd management and/or vaccination schemes (batch-to-batch or mass vaccination of the sow herd and vaccination of growing pigs) were implemented to assess their relative efficacy regarding viral persistence. The overall probability of a co-infection event for France, possibly leading to reassortment, was evaluated to 16.8%. The export of consecutive piglets batches was identified as the most efficient measure facilitating swIAV infection fade-out. Although some vaccination schemes (batch-to-batch vaccination) had a beneficial effect in breeding sows by reducing the persistence of swIAVs within this subpopulation, none of vaccination strategies achieved swIAVs fade-out within the entire farrow-to-finish pig herd.

MIDAS Network Members

Citation: