CT and clinical assessment in asymptomatic and pre-symptomatic patients with early SARS-CoV-2 in outbreak settings.


• Forty-eight of 74 (65%) pre-selected asymptomatic patients with SARS-CoV-2 had abnormal chest CT findings. • CT infiltrates pre-dated symptom onset by 3.8 days (range 1-5). • KL-6, CRP, and elevated body temperature identified patients with CT infiltrates. Higher infiltrate volume, percent lung involvement, and pulmonary consolidation identified patients who developed symptoms.

The early infection dynamics of patients with SARS-CoV-2 are not well understood. We aimed to investigate and characterize associations between clinical, laboratory, and imaging features of asymptomatic and pre-symptomatic patients with SARS-CoV-2.

COVID-19 CT infiltrates pre-dated symptoms in two-thirds of patients. Body temperature elevation and laboratory evaluations may identify asymptomatic patients with SARS-CoV-2 CT infiltrates at presentation, and the characteristics of CT infiltrates could help identify asymptomatic SARS-CoV-2 patients who subsequently develop symptoms. The role of chest CT in COVID-19 may be illuminated by a better understanding of CT infiltrates in patients with early disease or SARS-CoV-2 exposure.

Forty-eight of 74 (65%) initially asymptomatic patients had CT infiltrates that pre-dated symptom onset by 3.8 days. The most common CT infiltrates were ground glass opacities (45/48; 94%) and consolidation (22/48; 46%). Patient body temperature (p < 0.01), CRP (p < 0.01), and KL-6 (p = 0.02) were associated with the presence of CT infiltrates. Infiltrate volume (p = 0.01), percent lung involvement (p = 0.01), and consolidation (p = 0.043) were associated with subsequent development of symptoms.

Seventy-four patients with RT-PCR-proven SARS-CoV-2 infection were asymptomatic at presentation. All were retrospectively identified from 825 patients with chest CT scans and positive RT-PCR following exposure or travel risks in outbreak settings in Japan and China. CTs were obtained for every patient within a day of admission and were reviewed for infiltrate subtypes and percent with assistance from a deep learning tool. Correlations of clinical, laboratory, and imaging features were analyzed and comparisons were performed using univariate and multivariate logistic regression.

MIDAS Network Members