Detectable signals of episodic risk effects on acute HIV transmission: strategies for analyzing transmission systems using genetic data.


Episodic high-risk sexual behavior is common and can have a profound effect on HIV transmission. In a model of HIV transmission among men who have sex with men (MSM), changing the frequency, duration and contact rates of high-risk episodes can take endemic prevalence from zero to 50% and more than double transmissions during acute HIV infection (AHI). Undirected test and treat could be inefficient in the presence of strong episodic risk effects. Partner services approaches that use a variety of control options will be likely to have better effects under these conditions, but the question remains: What data will reveal if a population is experiencing episodic risk effects? HIV sequence data from Montreal reveals genetic clusters whose size distribution stabilizes over time and reflects the size distribution of acute infection outbreaks (AIOs). Surveillance provides complementary behavioral data. In order to use both types of data efficiently, it is essential to examine aspects of models that affect both the episodic risk effects and the shape of transmission trees. As a demonstration, we use a deterministic compartmental model of episodic risk to explore the determinants of the fraction of transmissions during acute HIV infection (AHI) at the endemic equilibrium. We use a corresponding individual-based model to observe AIO size distributions and patterns of transmission within AIO. Episodic risk parameters determining whether AHI transmission trees had longer chains, more clustered transmissions from single individuals, or different mixes of these were explored. Encouragingly for parameter estimation, AIO size distributions reflected the frequency of transmissions from acute infection across divergent parameter sets. Our results show that episodic risk dynamics influence both the size and duration of acute infection outbreaks, thus providing a possible link between genetic cluster size distributions and episodic risk dynamics.

MIDAS Network Members