Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion.


Understanding the transmission dynamics and persistence of avian influenza viruses (AIVs) in the wild is an important scientific and public health challenge because this system represents both a reservoir for recombination and a source of novel, potentially human-pathogenic strains. The current paradigm locates all important transmission events on the nearly direct fecal/oral bird-to-bird pathway. In this article, on the basis of overlooked evidence, we propose that an environmental virus reservoir gives rise to indirect transmission. This transmission mode could play an important epidemiological role. Using a stochastic model, we demonstrate how neglecting environmentally generated transmission chains could underestimate the explosiveness and duration of AIV epidemics. We show the important pathogen invasion implications of this phenomenon: the nonnegligible probability of outbreak even when direct transmission is absent, the long-term infectivity of locations of prior outbreaks, and the role of environmental heterogeneity in risk.

MIDAS Network Members

John Drake

Distinguished Research Professor
University of Georgia