Mathematically modeling the effect of touch frequency on the environmental transmission of Clostridioides difficile in healthcare settings.


Clostridioides difficile, formerly Clostridium difficile, is the leading cause of infectious diarrhea and one of the most common healthcare acquired infections in United States hospitals. C. difficile persists well in healthcare environments because it forms spores that can survive for long periods of time and can be transmitted to susceptible patients through contact with contaminated hands and fomites, objects or surfaces that can harbor infectious agents. Fomites can be classified as high-touch or low-touch based on the frequency they are contacted. The mathematical model in this study investigates the relative contribution of high-touch and low-touch fomites on new cases of C. difficile colonization among patients of a hospital ward. The dynamics of transmission are described by a system of ordinary differential equations representing four patient population classes and two pathogen environmental reservoirs. Parameters that have a significant effect on incidence, as determined by a global sensitivity analysis, are varied in stochastic simulations of the system to identify feasible strategies to prevent disease transmission. Results indicate that on average, under one-quarter of asymptomatically colonized patients are exposed to C. difficile via low-touch fomites. In comparison, over three-quarters of colonized patients are colonized through high-touch fomites, despite additional cleaning of high-touch fomites. Increased contacts with high-touch fomites increases the contribution of these fomites to the incidence of colonized individuals and decreasing the duration of a hospital visit reduces the amount of pathogen in the environment. Thus, enhanced efficacy of disinfection upon discharge and extra cleaning of high-touch fomites, reduced contact with high-touch fomites, and higher discharge rates, among other control measures, could lead to a decrease in the incidence of colonized individuals.

MIDAS Network Members

This site is registered on as a development site.