Close

Modeling malaria vaccines. II: Population effects of stage-specific malaria vaccines dependent on natural boosting.

Abstract

Population effects of malaria vaccination programs will depend on the stage specificity of the vaccine, its duration of effectiveness, whether it is responsive to natural boosting, the proportion vaccinated, and the preexisting endemic conditions. This paper develops models of infection-blocking (sporozoite), disease-modifying (merozoite), and transmission-blocking (gametic) vaccines. It explores numerically their different effects on prevalence of infection and disease when utilized in different types of immunization programs at various levels of coverage. Simulations show that possible qualitative consequences of malaria vaccination programs include decreased prevalence of infection and disease and decreased prevalence of infection without a corresponding decrease in prevalence of disease. Epidemics, either one-time or cyclical, could occur. These effects could be accompanied by changes in the age distribution of disease. Finally, vaccination could contribute to elimination of transmission. The duration of effectiveness of the malaria vaccine relative to the duration of natural immunity could have important consequences for the unvaccinated. The problem of predicting a threshold for elimination of transmission is discussed.

MIDAS Network Members

Citation: