Close

Role of high-dose exposure in transmission hot zones as a driver of SARS-CoV2 dynamics.

Abstract

Epidemiological data on the spread of SARS-CoV-2 in the absence and presence of various non-pharmaceutical interventions indicate that the virus is not transmitted uniformly in the population. Transmission tends to be more effective in select settings that involve exposure to relatively high viral dose, such as in crowded indoor settings, assisted living facilities, prisons, or food processing plants. To explore the effect on infection dynamics, we describe a new mathematical model where transmission can occur (i) in the community at large, characterized by low dose exposure and mostly mild disease, and (ii) in so called transmission hot zones, characterized by high dose exposure that can be associated with more severe disease. Interestingly, we find that successful infection spread can hinge upon high-dose hot zone transmission, yet the majority of infections are predicted to occur in the community at large with mild disease. This gives rise to the prediction that targeted interventions that specifically reduce virus transmission in the hot zones (but not in the community at large) have the potential to suppress overall infection spread, including in the community at large. The model can further reconcile seemingly contradicting epidemiological observations. While in some locations like California, strict stay-home orders failed to significantly reduce infection prevalence, in other locations, such as New York and several European countries, stay-home orders lead to a pronounced fall in infection levels, which remained suppressed for some months after re-opening of society. Differences in hot zone transmission levels during and after social distancing interventions can account for these diverging infection patterns. These modeling results warrant further epidemiological investigations into the role of high dose hot zone transmission for the maintenance of SARS-CoV-2 spread.

MIDAS Network Members

Citation: