The Optimization of Methods for the Collection of Aerosolized Murine Norovirus.


Globally, norovirus is the most common gastroenteritis causing pathogen. Annually, norovirus causes 685 million cases of acute gastroenteritis and 200,000 deaths, worldwide. Recent evidence has suggested that norovirus can also be spread via aerosolization; however, an indoor generation source has yet to be determined. We optimized a sampling method for the collection of aerosolized norovirus using murine norovirus (MNV) as a surrogate. Optimization of the sampling method was performed using two bioaerosol samplers (SKC BioSampler and the NIOSH Bioaerosol Cyclone Sampler 251) and two sampling media (Hanks Balanced Salt Solution [HBSS] and Phosphate Buffered Saline [PBS]). Murine norovirus was aerosolized in a bioaerosol chamber and later collected using each sampler/media combination. Collected MNV was quantified using quantitative polymerase chain reaction (qPCR). Intact capsids of MNV were assessed using propidium monoazide dye in combination with qPCR and confirmed with transmission electron microscopy. Ten trials were conducted, with each trial lasting for 30 min. The SKC BioSampler collected a significantly higher concentration of MNV than the NIOSH-251 sampler did (p-value < 0.0001). However, there were no significant differences in the relative percent of MNV that remained viable between both samplers (p-value = 0.2215). The use of HBSS sampling media yielded a higher concentration of MNV than PBS media (p-value = 0.0125). However, PBS media maintained viability at a significantly higher percentage than HBSS media (p-value < 0.0001). The results support the optimization of a sampling method for the collection of aerosolized MNV and possibly norovirus in different sampling environments.

MIDAS Network Members