Close

Characterization of a conical intersection between the ground and first exited state for a retinal analog

Abstract

Ab initio complete active space SCF calculations have been carried out to investigate the first excited electronic state of a retinal protonated Schiff base analog: all-trans-3,7-dimethylnona-2,4,6,8-tetraenmethylimminium cation. This model of the retinal chromophore in bacteriorhodopsin includes five conjugated double bonds as well as both pertinent backbone methyl groups. The excited state minimum that is relevant for isomerization in bacteriorhodopsin is investigated and is found to be in very close proximity to a Jahn–Teller conical intersection. The two (global) coordinates that are most effective in promoting efficient internal conversion back to the ground electronic state (by lifting the degeneracy between the ground and first excited state) are identified and discussed, and the distribution of the positive charge in the retinal analog as a function of these two coordinates is investigated.

MIDAS Network Members

Citation: