Close

Computational Population Biology: Linking the inner and outer worlds of organisms.

Abstract

Computationally complex systems models are needed to advance research and implement policy in theoretical and applied population biology. Difference and differential equations used to build lumped dynamic models (LDMs) may have the advantage of clarity, but are limited in their inability to include fine-scale spatial information and individual-specific physical, physiological, immunological, neural and behavioral states. Current formulations of agent-based models (ABMs) are too idiosyncratic and freewheeling to provide a general, coherent framework for dynamically linking the inner and outer worlds of organisms. Here I propose principles for a general, modular, hierarchically scalable, framework for building computational population models (CPMs) designed to treat the inner world of individual agents as complex dynamical systems that take information from their spatially detailed outer worlds to drive the dynamic inner worlds of these agents, simulate their ecology and the evolutionary pathways of their progeny. All the modeling elements are in place, although improvements in software technology will be helpful; but most of all we need a cultural shift in the way population biologists communicate and share model components and the models themselves, fit, test, refute, and refine models, to make the progress needed to meet the ecosystems management challenges posed by global change biology.

MIDAS Network Members

Citation:

Getz WM. (2013). Computational Population Biology: Linking the inner and outer worlds of organisms. Israel journal of ecology & evolution, 59(1)