Cost-effectiveness of adjuvanted versus nonadjuvanted influenza vaccine in adult hemodialysis patients.


All models are simplifications of real life and cannot capture all possible factors and outcomes.

Adjuvanted influenza vaccine would be cost-effective (incremental cost-effectiveness ratio <$50,000/quality-adjusted life-year) at a $1 adjuvant cost (on top of the standard vaccine cost) when adjuvant efficacy (in overcoming the difference between influenza vaccine response in HD patients and healthy adults) ≥60% and economically dominant (provides both cost savings and health benefits) when the $1 adjuvant's efficacy is 100%. A $2 adjuvant would be cost-effective if adjuvant efficacy was 100%.

The model simulated the decision to use either an adjuvanted or nonadjuvanted vaccine, assumed the societal perspective, and represented a single influenza season, or 1 year.

Economic stochastic decision analytic simulation model.

Adjuvanted influenza vaccine at different adjuvant costs and efficacies. Sensitivity analyses explored the impact of varying influenza clinical attack rate, influenza hospitalization rate, and influenza-related mortality.

Adjuvanted influenza vaccine with adjuvant cost ≤$2 could be a cost-effective strategy in a standard influenza season depending on the potency of the adjuvant.

Incremental cost-effectiveness ratio of adjuvanted influenza vaccine (vs nonadjuvanted) with effectiveness measured in quality-adjusted life-years.

US adult HD population.

Currently more than 340,000 individuals are receiving long-term hemodialysis (HD) therapy for end-stage renal disease and therefore are particularly vulnerable to influenza, prone to more severe influenza outcomes, and less likely to achieve seroprotection from standard influenza vaccines. Influenza vaccine adjuvants, chemical or biologic compounds added to a vaccine to boost the elicited immunologic response, may help overcome this problem.

MIDAS Network Members

This site is registered on as a development site.