Close

Improving Control of Tuberculosis in Low-Burden Countries: Insights from Mathematical Modeling.

Abstract

Tuberculosis control and elimination remains a challenge for public health even in low-burden countries. New technology and novel approaches to case-finding, diagnosis, and treatment are causes for optimism but they need to be used cost-effectively. This in turn requires improved understanding of the epidemiology of TB and analysis of the effectiveness and cost-effectiveness of different interventions. We describe the contribution that mathematical modeling can make to understanding epidemiology and control of TB in different groups, guiding improved approaches to public health interventions. We emphasize that modeling is not a substitute for collecting data but rather is complementary to empirical research, helping determine what are the key questions to address to maximize the public-health impact of research, helping to plan studies, and making maximal use of available data, particularly from surveillance, and observational studies. We provide examples of how modeling and related empirical research inform policy and discuss how a combination of these approaches can be used to address current questions of key importance, including use of whole-genome sequencing, screening and treatment for latent infection, and combating drug resistance.

MIDAS Network Members

Citation: