Pathobiological features favouring the intercontinental dissemination of highly pathogenic avian influenza virus.


Avian influenza viruses (AIVs) are a continued threat to global health and economy. Unlike other highly pathogenic AIVs, novel H5N8 disseminated very quickly from Korea to other areas in Asia, Europe and even North America following its first outbreak in 2014. However, the pathobiological features of the virus that favoured its global translocation remain unknown. In this study, we used a compartmental model to examine the avian epidemiological characteristics that would support the geographical spread of influenza by bird migration, and to provide recommendations for AIV surveillance in wild bird populations. We simulated virus transmission and translocation in a migratory bird population while varying four system properties: (i) contact transmission rate; (ii) infection recovery rate; (iii) mortality rate induced by infection; and (iv) migratory recovery rate. Using these simulations, we then calculated extinction and translocation probabilities for influenza during spring migration as a function of the altered properties. We find that lower infection recovery rates increase the likelihood of AIV translocation in migratory bird populations. In addition, lower mortality rates or migration recovery rates also favour translocation. Our results identify pathobiological features supporting AIV intercontinental dissemination risk and suggest that characteristic differences exist among H5N8 and other AIV subtypes that have not translocated as rapidly (e.g. H5N6 and H5N1).

MIDAS Network Members