Use of Deep Learning to Examine the Association of the Built Environment With Prevalence of Neighborhood Adult Obesity.


More than one-third of the adult population in the United States is obese. Obesity has been linked to factors such as genetics, diet, physical activity, and the environment. However, evidence indicating associations between the built environment and obesity has varied across studies and geographical contexts.

The study included 1695 census tracts in 6 cities. The age-adjusted obesity prevalence was 18.8% (95% CI, 18.6%-18.9%) for Bellevue, 22.4% (95% CI, 22.3%-22.5%) for Seattle, 30.8% (95% CI, 30.6%-31.0%) for Tacoma, 26.7% (95% CI, 26.7%-26.8%) for Los Angeles, 36.3% (95% CI, 36.2%-36.5%) for Memphis, and 32.9% (95% CI, 32.8%-32.9%) for San Antonio. Features of the built environment explained 64.8% (root mean square error [RMSE], 4.3) of the variation in obesity prevalence across all census tracts. Individually, the variation explained was 55.8% (RMSE, 3.2) for Seattle (213 census tracts), 56.1% (RMSE, 4.2) for Los Angeles (993 census tracts), 73.3% (RMSE, 4.5) for Memphis (178 census tracts), and 61.5% (RMSE, 3.5) for San Antonio (311 census tracts).

The cross-sectional study was conducted from February 14 through October 31, 2017. A convolutional neural network, a deep learning approach, was applied to approximately 150 000 high-resolution satellite images from Google Static Maps API (application programing interface) to extract features of the built environment in Los Angeles, California; Memphis, Tennessee; San Antonio, Texas; and Seattle (representing Seattle, Tacoma, and Bellevue), Washington. Data on adult obesity prevalence were obtained from the Centers for Disease Control and Prevention's 500 Cities project. Regression models were used to quantify the association between the features and obesity prevalence across census tracts.

To propose an approach for consistent measurement of the features of the built environment (ie, both natural and modified elements of the physical environment) and its association with obesity prevalence to allow for comparison across studies.

Model-estimated obesity prevalence (obesity defined as body mass index ≥30, calculated as weight in kilograms divided by height in meters squared) based on built environment information.

This study illustrates that convolutional neural networks can be used to automate the extraction of features of the built environment from satellite images for studying health indicators. Understanding the association between specific features of the built environment and obesity prevalence can lead to structural changes that could encourage physical activity and decreases in obesity prevalence.

MIDAS Network Members