Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems.


Many ecological systems are subject critical transitions, which are abrupt changes to contrasting states triggered by small changes in some key component of the system. Temporal early warning signals such as the variance of a time series, and spatial early warning signals such as the spatial correlation in a snapshot of the system's state, have been proposed to forecast critical transitions. However, temporal early warning signals do not take the spatial pattern into account, and past spatial indicators only examine one snapshot at a time. In this study, we propose the use of eigenvalues of the covariance matrix of multiple time series as early warning signals. We first show theoretically why these indicators may increase as the system moves closer to the critical transition. Then, we apply the method to simulated data from several spatial ecological models to demonstrate the method's applicability. This method has the advantage that it takes into account only the fluctuations of the system about its equilibrium, thus eliminating the effects of any change in equilibrium values. The eigenvector associated with the largest eigenvalue of the covariance matrix is helpful for identifying the regions that are most vulnerable to the critical transition.

MIDAS Network Members

John Drake

Distinguished Research Professor
University of Georgia